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1. Introduction 

Uranium hydriding is one of the most important processes that has received 

considerable attention over many 

studies have been carried out concerning thermochemistry, diffusion kinetics and 

mechanisms of U-hydriding, very little is known about the electronic structure and 

electronic features that govern the U-hydriding process. Yet it is the electronic feature 

that controls the activation barrier and thus the rate of hydriding. Moreover the role of 

impurities and the role of the product UH3 on hydriding rating are not fully understood. 

Although many experimental and modeling 

An early study by Condon and Larson' concerns with the kinetics of U-hydrogen 

system and a mathematical model for the U-hydriding process. They proposed that 

diffusion in the reactant phase by hydrogen before nucleation to form hydride phase and 

that the reaction is first order for hydriding and zero order for dehydriding. Condon' has 

also calculated and measures the reaction rates of U-hydriding and proposed a difhsion 

model for the U-hydriding. This model was found to be in excellent agreement with the 

experimental reaction rates. From the slopes of the Arrhenius plot the activation energy 

was calculated as 6.35 kcal/mole. In a subsequent study Kirkpatrick3 formulated a close- 

form for approximate solution to Condon's equation. Bloch and Mintz4 have proposed 

the kinetics and mechanism for the U-H reaction over a wide range of pressures and 

temperatures. They have discussed their results through two models, one, which 

considers hydrogen diffusion through a protective UH3 product layer, and the second 

where hydride growth occurs at the hydride-metal interface. These authors obtained two- 

dimensional fits of experimental data to the pressure-temperature reactions. Kirkpatrick 

and Condon' have obtained a linear solution to hydriding of uranium. These authors 

showed that the calculated reaction rates compared quite well with the experimental data 

at a hydrogen pressure of 1 atm. 

Powell et a1.6 have studied U-hydriding in ultrahigh vacuum and obtained the 

linear rate data over a wide range of temperatures and pressures. They found reversible 

hydrogen sorption on the UH3 reaction product from kinetic effects at 21 "C. This 

demonstrates restarting of the hydriding process in the presence of UH3 reaction product. 



DeMint and Leckey7 have shown that Si impurities dramatically accelerate the U- 

hydriding rates. 

We report our recent results of relativistic computations8 that vary from complete 

active space multi-configuration interaction (CAS-MCSCF) followed by multi-reference 

configuration interaction (MRSDCI) computations that included up to 50 million 

configurations for modeling of uranium-hydriding with cluster models will be presented. 

2. Results 

Figure 1 shows our computed potential energy surface for the insertion of a U site 

into H2. As seen from Fig.1, pure U site has to surpass a barrier of 20.9 kcal/mole for the 

U-hydriding. Once the barrier is surpassed a stable product is formed which is 22.4 

kcaVmole more stable than the reactants. Figure 2 shows the potential energy surface of 

an additional Hz approaching UH3 as modeled by u3 interaction with H2. The product 

UH3 is highly ionic and thus U transfers electron density to the three hydrogens resulting 

in a U"3 state. As seen from Fig.2, v3 inserts into H2 spontaneously thus demonstrating 

the U3 -site in the product UH3 binds to H2 spontaneously forming a complex in which H2 

is separated far enough so as to cause liberation of H atoms in the presence of U. 

3. Discussion 

Our computed potential energy surfaces demonstrate a 2 1 kcaVmole activation 

energy barrier for pure U reaction with H2. However, the presence of the product UH3 

catalyzes the U-hydriding. We have also modeled the presence of Si impurities for the U- 

hydriding reaction to show that the activation barrier is lowered by the presence of Si. 

Our computations reveal an electron donor-acceptor model for the U-hydriding, where H2 

exchanges electronic density from its occupied lo, orbital to the U(6d o) orbital and back 

donation fiom the U(6d n) orbital back to H2 lo, antibonding orbital causes the 

dissociation of Hz by U. In particular the 5f or 7s orbitals of U are not involved in the 

dissociation of H2, We also show that Si impurities assist the hydriding process by the 

spontaneous insertion of the 'D state of Si into H2. The UH3 product catalyzes the 

hydriding process by spontaneous formation of a complex of H2 at the U+3 site, which 

opens up the H2 bond sufficiently to cause further U-hydriding to occur spontaneously. 

The bond breaking process in the formation complex assists the formation of H atoms in 
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the presence of U. The hydrogen atoms thus formed diffuse through the cracks to cause 

further U-hydriding thus explaining the experimental observation of Powell et al. 
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Figure 1 Potential Energy Surface for U-H, reaction 
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Figure 2 Potential Energy Surface for UH,-H, interaction 


